A comparison of MR cholangiopancreatography at 1.5 and 3.0 Tesla.
نویسندگان
چکیده
Clinical MR systems operating at 3.0 Tesla have the potential to significantly improve spatial resolution due to the boost in intrinsic signal to noise ratio. However, body imaging at these field strengths presents a number of technical challenges. We performed a prospective pilot study in which 10 patients underwent an MR cholangiopancreatography (MRCP) examination consecutively on 1.5 and 3.0 Tesla systems (both Philips Intera). An axial half Fourier segmented turbo spin echo (HASTE) sequence and a coronal thick-slab 2D turbo-spin echo (TSE) sequence were compared on both systems. A reader measured the signal intensity (SI) ratios of common bile duct (CBD): liver, and CBD: fat on HASTE images and CBD: liver on the TSE images. A second reader performed a qualitative analysis of the intrahepatic and extrahepatic biliary anatomy. Quantitative data was compared using the paired t-test and qualitative data with the paired Wilcoxon signed rank test with p < 0.05. The quantitative analysis of the HASTE sequences showed a slightly higher signal intensity ratio (CBD:liver) at 3.0 Tesla compared with 1.5 Tesla (8.1 vs 5.6, p = 0.002). No significant difference was found between the SI ratios of (CBD:fat) on HASTE images or (CBD:liver) on TSE images. The qualitative analysis showed superior image quality of 3.0 Tesla over 1.5 Tesla images on both HASTE (31 vs 25, p = 0.032), and TSE sequences (34 vs 28, p = 0.043). This pilot study shows that MRCP is feasible at 3.0 Tesla with some improvement in image quality and signal characteristics. Further development may be achieved with sequence optimization and improved coil design.
منابع مشابه
Geometric accuracy of 3D coordinates of the Leksell stereotactic skull frame in 1.5 Tesla- and 3.0 Tesla-magnetic resonance imaging: a comparison of three different fixation screw materials
We assessed the geometric distortion of 1.5-Tesla (T) and 3.0-T magnetic resonance (MR) images with the Leksell skull frame system using three types of cranial quick fixation screws (QFSs) of different materials-aluminum, aluminum with tungsten tip, and titanium-for skull frame fixation. Two kinds of acrylic phantoms were placed on a Leksell skull frame using the three types of screws, and were...
متن کاملComparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla.
OBJECTIVE To evaluate the relative sensitivity of MR scanning for multiple sclerosis (MS) at 1.5 Tesla (T) and 3.0 T using identical acquisition conditions, as is typical of multicenter clinical trials. METHODS Twenty-five subjects with MS were scanned at 1.5 T and 3.0 T using fast spin echo, and T(1)-weighted SPGR with and without gadolinium contrast injections. Image data, blinded to field ...
متن کاملCardiac pacemakers, ICDs, and loop recorder: evaluation of translational attraction using conventional ("long-bore") and "short-bore" 1.5- and 3.0-Tesla MR systems.
PURPOSE To evaluate magnet-related translational attraction for cardiac pacemakers, ICDs, and an insertable loop recorder in association with exposure to "long-bore" and "short-bore" 1.5- and 3.0-Tesla MR systems. MATERIALS AND METHODS Fourteen cardiac pacemakers, four ICDs, and one insertable loop recorder were evaluated for translational attraction using deflection angle tests performed at ...
متن کاملMusculoskeletal MR Imaging at 3.0 Tesla
Introduction Most conventional MR imaging of the musculoskeletal system is done a 1.5 Tesla. Higher field systems, typically 3.0 Tesla, are now becoming available. 3.0T MRI means a higher signal-to-noise ratio (SNR), which can be used to improve imaging speed or resolution. However, there are changes in relaxation times at 3.0T as well as increased artifacts to consider. Our initial clinical ex...
متن کاملCoronary magnetic resonance angiography: in vivo comparison of image quality at 1.5 Tesla versus 3.0 Tesla with Parallel Radiofrequency Transmission
Coronary plaque and thrombus characterization at 3.0 Tesla holds great potential for clinical benefit but problems still exist with coronary lumen image quality at 3.0 Tesla, which is a pre-requisite for these techniques. This study shows that despite implementation of parallel transmit technology to improve radiofrequency (B1 field) homogeneity, balanced steady-state-free-precession (b-SSFP) C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The British journal of radiology
دوره 78 934 شماره
صفحات -
تاریخ انتشار 2005